THE UNITED REPUBLIC OF TANZANIA NATIONAL EXAMINATIONS COUNCIL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

031/2A

PHYSICS 2A ACTUAL PRACTICAL A

(For Both School and Private Candidates)

Time: 2:30 Hours

Wednesday, 08th November 2017 a.m.

Instructions

- 1. This paper consists of **two** (2) questions. Answer all the questions.
- 2. Calculations should be shown clearly.
- 3. Marks for questions are indicated at the end of each question.
- 4. Calculators, cellular phones and any unauthorised materials are **not** allowed in the examination room.
- 5. Write your **Examination Number** on every page of your answer booklet(s).
- 6. The following information may be useful: $\pi = 3.14$ Acceleration due to gravity, $g = 10 \text{m/s}^2$.

- 1. The aim of the experiment in Figure 1 is to determine the Young's Modulus, Y, of a wooden meter rule.
 - (a) Clamp a meter rule along the top of the bench with its graduated face upwards and with a length L of about 85cm projecting beyond the edge of the bench. Record the length of L.

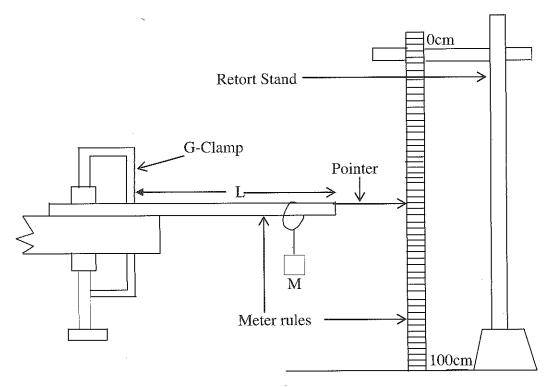
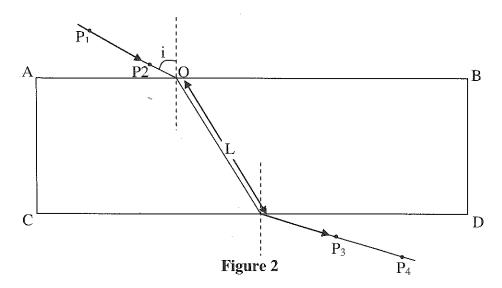



Figure 1

- (b) Attach the pointer to the free end of the meter rule and note its position X_0 on a meter rule clamped vertically in retort stand when unloaded.
- (c) Suspend a load M of 50g at a distance 1.0cm from the free end. Note the new position X of the pointer and then deduce the depression, d, of the pointer on the meter rule scale.
- (d) Repeat procedure (c) above for M equal to 100g, 150g, 200g and 250g.
- (e) Tabulate your results.
- (f) Plot the graph of d against M.
- (g) Find the slope, S, of the graph.
- (h) Use the vernier caliper to measure the breadth, b, and the thickness, t, of the meter rule.
- (i) Calculate Young's modulus for the wooden meter rule from the expression $\frac{Sb}{4g} = \frac{1}{Y} \times \left(\frac{L}{t}\right)^3.$
- (j) Mention two sources of errors and two precautions taken in this experiment.

(25 marks)

- 2. The aim of this experiment is to determine the refractive index n of a glass block.
 - (a) Fix the plane sheet of paper provided on the soft board using optical pins.
 - (b) Place the glass block on the sheet of paper so that the largest face is topmost as shown in Figure 2 and trace out the outline of the glass block.

- (c) Stick pins P_1 and P_2 in the soft board in such a way that the angle of incidence i is 25^0 and make sure that AO is less than one third of AB.
- (d) Place pins P₃ and P₄ so that they may appear to be in line with the images of P₁ and P2 as observed through the face CD of the block.
- (e) Remove the block and trace the ray through it.
- (f) Measure and record the distance L.
- (g) Replace the block and repeat procedures (c) to (f) for the angle of incidence $i = 35^0$, 45^0 , 55^0 and 65^0 .
- (h) Tabulate your results including the values of $\sin^2 i$ and $1/L^2$.
- (i) Plot a graph of $\sin^2 i$ against $1/L^2$.
- (j) Determine the slope, s, of your graph and the intercept C_1 on the $\sin^2 i$ axis.
- (k) Find the values of 'n' from the relation $n = \sqrt{C_1}$ and the breadth b of the glass block from the relation $b = \frac{\sqrt{(-s)}}{n}$.

(25 marks)

Note: The diagrams for question 2 should be attached to answer booklet(s)